Log processing 1
Task:Every three rows of records are a piece of log. Organize the log into a structured file.
Python
1 | import pandas as pd |
2 | import numpy as np |
3 | log_file = 'E://txt//access_log.txt' |
4 | log_info = pd.read_csv(log_file,header=None) |
5 | log_g=log_info.groupby(log_info.index//3) |
6 | rec_list = [] |
7 | for i,g in log_g: |
8 | rec = g.values.reshape(1*3) |
9 | rec[1] = rec[1].split(":")[-1].replace("#","") |
10 | rec="\t".join(rec) |
11 | rec = np.array(rec.split("\t")) |
12 | rec = rec[[6,7,0,1,3,4,8,5]] |
13 | rec_list.append(rec) |
14 | rec_df = pd.DataFrame(rec_list,columns=["USERID","UNAME","IP","TIME","URL","BROWER","LOCATION","module"]) |
15 | print(rec_df) |
esProc
A | ||
1 | E://txt//access_log.txt | |
2 | =file(A1).import@s() | |
3 | =A2.group((#-1)\3) | |
4 | =A3.(~.(_1).concat("\t").array("\t")) | |
5 | =A4.new(~(7):USERID,~(8):UNAME,~(1):IP,~(2):TIME,~(4):URL,~(5):BROWER,~(9):LOCATION,left(~(6).array("\:")(2),-1):module) |
With the mechanism of grouping by row number, you can process one group of data every time in loop, simplifying the difficulty.